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L5 interval of computation without producing artificial
reflections; it allows down-going waves to pass through

--We 4+ " a method for the estimation of unknown the boundary undisturbed, while annihilating up-goingparameters (variable as well as constant) occurring in waves
a hyperbolic system, in the context of a seismic appli-

cation. - presets both theoretical results and some We assume we have data observations, iti corres-
numeriaell/(test) examples.-,nmera (s. ponding to u(t,0), a solution of (1) evaluated at the

surface. The inverse, or identification problem con-
Introduction sists of minimizing a least-squares function

We have developed a numerical algorithm, and a J(q) 2 I 1ji u(ti. 0 ;q ) l2

corresponding convergence theory to solve a one t 1I
dimensional "seismic" inverse problem. The response constraint set Q. Here (t.x) - u(tx;q) is the
in certain classes of seismic experiments can be solution of (1) corresponding to q(x) (q,(x) q2(x)
modeled by the following hyperbolic partial differen- ( q
tial equation with associated boundary and initial klIK2 ,k). We follow the general approach developed in
conditions: [3] and [1]; we first reformulate the identification

a2 u . problem in an abstract setting, then define a sequence
*(x) 7- (q2 (x) . ) t , x [OlJ of approximate finite dimensional identification prob-

it 2(xal6, the solution of which generate parameter asti-
mates which converge to a solution of the original

(t.0) +identification problem.xtO * klU~tO) " s(t;k)

Convergence

- u (t,l) + k - (tl) ( Motivated by the fact that our differential equa-
2 ax tion can be written as a system using the variables

(uut), we define a Hilbert space X(q) I V(q) x L2 (q)u(O.x) - (x) where V(q) is H1(0,1) with inner product

<vw>v (q) afq 2 DvDwdx q2 (O)klv(O)w(O). and L (q) is

Here x represents depth below the surface of the earth, nevw>oq qvwdx T
u represents displacement, ql(x) is the mass density X(q) inner product is then given by x9yq- cXlYlv(q)
of the medium (in the most general case an unknown), T
and q2 (x) is an unknown elastic modulus. The boundary + <92,y2>o,q where x a (xl,x 2 )T, y - (yly 2 )

T . After

condition at the surface (x-0) is an elastic boundary a straightforward transformation to a system with
condition involving the unknown (negative constant) homogeneous boundary conditions, system (1) can be
k,, and an unknown source term s(t;k). For our treat- rewritten in X(q) as

ment of the problem it is not necessary to assume that i(t) - A(q)z(t) + G(t;q)
s is an impulse. In the numerical examples presented (2)
below, it has been assumed that s(t;k) has a known k

I form, and only the unknown i (a constant vector in I) z(O) - zW(q)
F is to be identified, but this also is not essential. u(t,.)

We show for example, that q2 (x) (similar remarks are - .t)E X(q) i. identified with ut(,,) the

valid for s) can be identified as a function without
a priori knowledge of its shape. The ideas in this boundary conditions are incorporated into the domain
case are similar to those in [2] where problems with of the operator AIq by -fining V (4)

%*, coefficients which are unknown functions of both space 2f t oear Aq by defining V "a"
\pJ and time are discussed for parabolic equations. At the fv C V(q) n H (0,l) Dv(0) + kv(O) - 0) and

. bottom boundary ix- 1), an absorbing boundary condition ,,,)
J, is imposed, involving an unknown (positive constant) domA(q) U ) VB(q) - H'{0.1) 1 v(1)+k2 u(1) - 0),an absorbingseboundary condition ist imtte()E 8" H1 Ol) vl)kDul
2 The purpose of this condition is to limit the and A(q) is the unbounded linear operator defined by

Approved for public releaSe:

84 08 06 050 distribution unlimited.
AV,* , AI". ..... , . .. ",'. ,, ' ..,f .. . ..'p , .. "- .. :,:. "2



0 N N N t NNA(q) z zN~- T (~ ~ (~ (q+f T (t-s;q)P (q)G(s;q)ds.

0 (5-- •( / q l)D (q 2 D ) 0 (5 )
(m/We now pose the approximate identification problem as

With X(q) and A(q) so chosen, for each q A(q) is a dis- n N 2sipative operator in X(q) and it can be shown that in (IDN) (q) z(tlx.O over
fact A'q) is the generator of a CO-semigroup T(t;q) on I1i x o
X(q). Standard semigroup theory can then be used to q 4E Q subject to zN(.;q) satisfying (5).
show that equation (2) has a unique mild solution:

t-.. It is important to note that since X N(q) is a
z(t;q) - T(t;q)zO(q) + f T(t-s;q)G(s;q)ds (3) finite dimensional space. (4) is in fact an initialz q.-" 0 value problem for a system of ordinary differential

equations. Furthermore, due to the nature of the

and the identification problem can be restated as spline basis functions, this system possesses desirable
numerical properties, for example, the matrix repre-

() M - zI(t 1 ) 2 eqe sentation for AN(q) is sparse and banded. We will dis-
i(n1 cuss below a spline representation for q2 (x), which

subject to z(-;q) satisfying (3), where zI repre- makes solving (4) even more tractable.

sents the first component of z. The identification problems (ID N ) can be solved
using INSL routines (a Levenberg-Marquardt algorithm

Before formulating the approximate identification for the optimization, Gear's method to solve the dif-
problems, we first define finite dimensional subspaces ferential equations) with a sequence of parameter esti-

x Nq). Let S3(A N) be the subspace of C cubic splines mates (q N thus generated. One then would like to
(as in [6], pp. 78-81) corresponding to the partition verify that this sequence, or some subsequence thereof,
N N Nconverges to a solution, q', of the original problem,
a {xOi1,N , x1 = i/N, and then define XN(q) to be (ID).

that subspace of S3(N) s3 (aN) which satisfies the We use the following version of the Trotter-Kato
boundary conditions corresponding to q, i.e., Theorem.
1.. N(q) C domA(q). The space NNq a eepesda
X t q aA() he spane of a sto2N3 (q) can be expressed as Theorem: Let (B.1-1) and (B 'N. N - 1.2...., bethe span of a set of 2N+3 basis elements, which are N IN)

straightforward modifications of the standard spline Banach spaces and let w : 8 - B be bounded linear

basis elements of S3 (&N) x S3(AN ) (see [5] or [4, p. 38) operators. Further assume that Tt) and TN(t) are CO-. for details). As a result of these modifications, the semigroups on B and BN with infinitesimal generators
new basis elements, and thus the subspaces, depend on N
the unknown parameter q. It is clear then, that as we and , respectively. If
iterate on q, these spaces will change. (I) l m NxJN - IxI for all x (e B .

One assumption we make about the constraint set Q N_
is that each component is uniformly bounded above and
below, implying that as q ranges over Q, the X(q) norms (1) there exist constants M, w independent of N
will be uniformly equivalent, and hence the spaces X(q) sTN(t)IN
will be equal as sets. With this in mind, let PN(q) : such that ( : Met, for t _ 0,

X() - xN(q) be the orthogonal projection of X(41 onto . (iii) there exists a set DC B, D c dom(A), with
x NX(q) in the X() norm (for a precise statement of this, (XO - A)- - B for some x0> 0. such that for all
one should introduce the canonical isomorphism which 0 0

xiE V we haveassociates elements of X( ) with those in the equivalent -N Nspace X(q), but to shorten this presentation, we will IA r x - w AxIN - 0 as N - -

omit such notation); whenever q and q are the same the then ITN(t)Nx - NT(t)xI,- 0 as N for all xQ B

projection will be written as P (q). Define AN(q) uniformly in t on compact intervals in [0,-).

PN(q)A(q)PN(q) and define the approximate 
system in

X N(q) as We apply this theorem by identifying (B,I-1) with
IZVI (N, NCt) A ( t)(X(q),j. NM .N) with (X(q ),I.iqN)- A with A(4),

and AN with A N(q N), and we assume {q ) is an arbitrary

N0) N pNqz 0 ) sequence such that q * in an appropriate sense.z (0) - p (q)zO(4).

N 0Any version of the Trotter-Kato Theorem would
The operator AN(q) inherits the dissipativity of A(q), involve some convergence statement about the generators
and is also the generator of a C0 -semigroup, TN(t;q) on AN(qN) and A(4). As mentioned earlier, the spaces

. X(q). 
M oreover, we can establish the existence and xN(q N) and the domains of the approximate operators

uniqueness of mild solutions to (4) and write them as AN(qN) change with qN. Moreover, elements of domAN(qN)

.msatisfy the boundary conditions corresponding to qN

mS.,o
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while 'helients of domA(q) satisfy the boundary con- Definq E Q 

ditions corresponding to q. and in general there is no
inclusion relation between these sets. This necessi- We can fix M and iteratively solve (ID) over Q to

tates the use of an operator wN: X(C) - X(qN) which obtain a sequence (qN(M))N with qN(M) 2 (qN(M).k".

maps elements of domA(q) into those of domA(qN ) sN) and q)(N)C JM(Q2) The convergence theorems
that it will be possible to compare these elements, discussed in the previous section guarantee that this

Once the Trotter-Kato Theorem has been used to sequence contains a subsequence (relabeled for con-

show the convergence of the semigroups, it can be shown venlence) such that qN(M) - q(M), where 4(M) satisfies

.-'. that also the (mild) solutions, zN (t;qN) of (4) con- J(j(M)) _ J(q) for any q e QM. That this sequence

verge in X(qN) to the (mild) solution z(t;q) of (2) (4(M)), is in fact a set of good approximations to a
(again, a precise statement of this convergence would solution of (ID) can be argued as follows. Under the

require the use of the canonical isomorphism) whenever proper compactness assumptions about Q, M will also be
N _ in an appropriate sense. With this result and compact, ensuring the existence of a subsequence

N the following theorem (from [4] or [5]) it can be shown *.'.-(relabeled, if necessary ) of 4i(M) such that 4(M) - q*
that q* is a solution to the inverse problem. in Q. Under further (although not too restrictive)

Theorem: Assume Q is comp~act in the C x H1 ,2+k assumptions, among them that the solution z(t;q) isThem Q is co pNt TN tcontinuous in q (which can be proved using the Trotter-
topology. If q - zO(q). q - PN(q)z, q - TN(t;q)z, Kato Theorem), one can prove that q* is a solution to

z GC X(q) are continuous in this same Q-topology, with (ID). This proof involves the compactness of Q and
standard spline error estimates such as those found inthe latter uniformly in t 6 [0,T], then [7].

(i) there exists for each N a solution qN of (IDN)

and the sequence (4N} possesses a convergent Numerical Examples
subsequence q - q. In the examples to be presented below, the "data"

has been generated using an independent finite dif-
(ii) If we further assume that, for any sequence ference scheme, where known "true" values of the param-

-qJ} in Q with qJ - , we have zJ(t;qJ )  eters were preassigned. We begin each example with an

z(t;q) as j - - uniformly in t E O,T), then q initial guess qO and a choice of N and solve (ION ) to

s aobtain qN. We then use this qN as the initial guess
.. is a solution of (ID). for the next value of N. All examples were produced

The proofs and details of all the results stated above either on an IBM VM/370 or a CDC 6600.

can be found in [5] and are variations of the general Example 1: For this example we parameterized q2 as
framework developed in (3]. tn2lqs

q2 (x) = 3/2 + (1) tan- [q2 (x-q22 )], where q21 and
Estimation of Functional Coefficients q22 are to be estimated. We used s(t;k) , 0. and

tinitial conditions 4(x) - ex. *(x) - - 3ex. Data

If we make further smoothness assumptions on the points were chosen at x a 0 and fifteen equally spaced
variable coefficients to be estimated, and stronger time values in (0,1]. We obtained the following
compactness assumptions on Q, we can search for an results:
approximation to each of these coefficients as a N N N N
finite linear combination of cubic splines, reducing qNI q 2 k k 2 N(qN)
the infinite dimensional optimization problem to a___ __

-e finite dimensional one. In our numerical examples, we N-4 5.873 0.503 -0.995 3.005 0.15_10-3

. .e assume for computational ease that ql(x) s 1, and T
search for q2(x) in a function space. For notational N"8 5.929 0.497 -1.001 3.001 0.12T r0u

convenience, we will write QI x Q2 x Q3. so that Values 6.0 0.5 -1.0 3.0
if q = (ql(x),q2(x)klk 2, k)E Q, then q, Q1 , q2 Q21 Startn

and (klk 2 ,k)G Q3" If we let IM(q2(.)) denote the Up (q ) 5.0 1 -2.0 2.0
interpolate of q2 in the space of cubic splines S3(aM),

then following arguments similar to those in [2], we Example 2: We added random noise to the data in this

can conclude that 1M(02) has the following represen- example, at a level of about 3%. We searched for q 2
tation: as a constant, we used s(t;k) - k (1-eSt)ek2t, and

I

'4MN 3 used zero initial conditions. Data points were chosen
I M q (x) : [0,1]- IR I q (x)- • Bi(x),c 1E i  at x - 0 and fifteen equally spaced time values in1 2 i (0,2). We obtained these results:

where (BM(x)) are the basis functions for S3(a M ) and

each €t is a compact subset of 3. Searching for (an
• approximate) q2 in I (Q2 ) is then equivalent to search-

for' . ) 1+3
.ng for (Cc 2 .... cM+3 in C1 * C2 ... 

C M 3

,"
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N z jN(qN) Dissertation, Brown Univ., Providence, RI. May,

N. -4 2.887 2.076 r.% - .1101.09o.1200o-3  [)P.,. Prenter. Splines and Variational Mtos
N-B8 2.947 2.032 -1.013 -2.038 1.027 0.17NIl03 Wlley-Jnterscience, New York. 1975.True [ 1 M.H. Schultz. Spline Analisis, Prentice-Hall.

T ruep 2.0 -[7 2.0 1 Englewood Cliffs. N.J., 1973.
Start I 3.0 . 1 - 1.0

Up (q) 2.0 1.5 -. -1.0 2.0

Example 3. In this example, we searched for q2 (x) in

the space of cubic splines; the true used was

q2(x) - 1.5 + tanh[6(x-f)]. We used s(t;i) -0, and

#(x) - ex , *(x) - - 3ex . We did not search for the
boundary parameters in this example; the true values,* 0

kI -- 1.0, k2 - 3.0 were used. The data points were

chosen at seven equally spaced spatial values in [0,1]
and three equally spaced time values in (0,1]. Our
Initial guess for q2 (x) was the constant function
0
q2 (x) - 6.0. With N-4 (for the state approximation)

and N- 1 (coefficient approximation) we obtained an

estime, q4 for our functional coefficient such that

q - q21 * 0.099, and J (q). 0.48. 102 We have
several spatial observations in this example rather
than only the one at the surface; this is more repre-

5, sentative of problems that arise in treating data from
"bore-hole" type of seismic experiments, in which
receivers are located at various points down a well.
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